19 research outputs found

    The Chicken and the Pig: User Involvement in Developing Usability Heuristics

    Get PDF
    Traditionally, users have not been involved in certain usability engineering methods, although they arguably are the most important stakeholders. This paper explores the possibility of involving users in developing a set of usability heuristics for a specific type of application, an activity they are not usually involved in. Using a qualitative approach based on interviews, a focus group, and an online survey, usability experts and software users evaluated existing sets of heuristics in terms of their applicability to a specific type of application and developed new heuristics to supplement them. The results indicate that the users provide a valuable contribution to the adaptation of existing heuristics to a specific type of application. Users add a new perspective and can address problem areas that usability experts, especially those with little or no experience with the specific application area, would not have identified

    The N-terminal TOG domain of Arabidopsis MOR1 modulates affinity for microtubule polymers

    Get PDF
    Microtubule-associated proteins of the highly conserved XMAP215/Dis1 family promote both microtubule growth and shrinkage, and move with the dynamic microtubule ends. The plant homologue, MOR1, is predicted to form a long linear molecule with five N-terminal TOG domains. Within the first (TOG1) domain, the mor1-1 leucine to phenylalanine (L174F) substitution causes temperature-dependent disorganization of microtubule arrays and reduces microtubule growth and shrinkage rates. By expressing the two N-terminal TOG domains (TOG12) of MOR1, both in planta for analysis in living cells and in bacteria for in vitro microtubule-binding and polymerization assays, we determined that the N-terminal domain of MOR1 is crucial for microtubule polymer binding. Tagging TOG12 at the N-terminus interfered with its ability to bind microtubules when stably expressed in Arabidopsis or when transiently overexpressed in leek epidermal cells, and impeded polymerase activity in vitro. In contrast, TOG12 tagged at the C-terminus interacted with microtubules in vivo, rescued the temperature-sensitive mor1-1 phenotype, and promoted microtubule polymerization in vitro. TOG12 constructs containing the L174F mor1-1 point mutation caused microtubule disruption when transiently overexpressed in leek epidermis and increased the affinity of TOG12 for microtubules in vitro. This suggests that the mor1-1 mutant protein makes microtubules less dynamic by binding the microtubule lattice too strongly to support rapid plus-end tracking. We conclude from our results that a balanced microtubule affinity in the N-terminal TOG domain is crucial for the polymerase activity of MOR1

    Alternating-Site Mechanism of Kinesin-1 Characterized by Single-Molecule FRET Using Fluorescent ATP Analogues

    Get PDF
    Kinesin-1 motor proteins move along microtubules in repetitive steps of 8 nm at the expense of ATP. To determine nucleotide dwell times during these processive runs, we used a Förster resonance energy transfer method at the single-molecule level that detects nucleotide binding to kinesin motor heads. We show that the fluorescent ATP analog used produces processive motility with kinetic parameters altered <2.5-fold compared with normal ATP. Using our confocal fluorescence kinesin motility assay, we obtained fluorescence intensity time traces that we then analyzed using autocorrelation techniques, yielding a time resolution of ∼1 ms for the intensity fluctuations due to fluorescent nucleotide binding and release. To compare these experimental autocorrelation curves with kinetic models, we used Monte-Carlo simulations. We find that the experimental data can only be described satisfactorily on the basis of models assuming an alternating-site mechanism, thus supporting the view that kinesin's two motor domains hydrolyze ATP and step in a sequential way

    MRI of the first event in pediatric acquired demyelinating syndromes with antibodies to myelin oligodendrocyte glycoprotein

    No full text
    Antibodies against the myelin oligodendrocyte glycoprotein (MOG-Ab) can be detected in various pediatric acquired demyelinating syndromes (ADS). Here, we analyze the spectrum of neuroradiologic findings in children with MOG-Ab and a first demyelinating event. The cerebral and spinal MRI of 69 children with different ADS was assessed in regard to the distribution and characteristics of lesions. Children with acute disseminated encephalomyelitis (n = 36) or neuromyelitis optica spectrum disorder (n = 5) presented an imaging pattern characterized predominantly by poorly demarcated lesions with a wide supra- and infratentorial distribution. Younger children also tended to have poorly defined and widespread lesions. The majority of patients with an isolated optic neuritis (n = 16) only presented small non-specific brain lesions or none at all. A longitudinally extensive transverse myelitis mainly affecting the cervical, and less often so the thoracic, lumbar, and conus regions, was detected in 31 children. The three children of our cohort who were then finally diagnosed with multiple sclerosis had at onset already demarcated white matter lesions as well as transverse myelitis. In conclusion, children with MOG seropositive ADS present disparate, yet characteristic imaging patterns. These patterns have been seen to correlate to the disease entity as well as to age of symptom onset
    corecore